

SALBARI COLLEGE सालबारि फरायसालिमा

Quality Education, Dedication and Knowledge Enhancement

One-one, onto functions and bijections

Department of Mathematics Salbari College, Salbari

September 26, 2025

One-One function

When is a function said to be one-one? If different elements of the domain have different images. What does this mean? If we take two elements x_1 and x_2 in the domain, and $x_1 \neq x_2$, then we must have the images of x_1 and x_2 are different. Let us write this formally:

Definition: A function $f: X \to Y$ is said to be *one-one* (or one-to-one or injective) if for each pair of points $x_1, x_2 \in X$ with $x_1 \neq x_2$, we have $f(x_1) \neq f(x_2)$.

Examples

Example 1. The identity function on any nonempty set is one-one.

Example 2. The function $f:(0,1)\to\mathbb{R}$ defined by $f(x)=\frac{1}{x}$ is one-one.

Proof: For any $x_1, x_2 \in (0, 1)$, if $x_1 \neq x_2$, then we have $\frac{1}{x_1} \neq \frac{1}{x_2}$, that is, $f(x_1) \neq f(x_2)$. Therefore, f is one-one.

Example 3. The function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^3$ is one-one.

Proof: Suppose $x, y \in \mathbb{R}$ with $x \neq y$. We claim that $f(x) \neq f(y)$, i.e., $x^3 \neq y^3$. This is equivalent to showing that $x^3 - y^3 \neq 0$. Note that, $x^3 - y^3 = (x - y)(x^2 + xy + y^2)$. We consider different cases:

- (1) If x and y are both positive or both negative, then $x^2 + xy + y^2 > 0$. Since $x y \ne 0$, this implies $x^3 y^3 \ne 0$.
- (2) If one of x and y is zero, then the other is nonzero. Thus, one of x^3 and y^3 is zero and the other is nonzero, hence they are unequal.
- (3) If x and y are of opposite signs, so are x^3 and y^3 , and hence $x^3 \neq y^3$.

Thus our claim holds, and therefore f is one-one.

Proposition

Proposition 1 A function $f: X \to Y$ is one-one if and only if

$$\forall x_1, x_2 \in X, f(x_1) = f(x_2) \implies x_1 = x_2.$$

Proposition 1 is very useful in proving that a function is one-one.

Example 1 The function $f: \mathbb{R} \to \mathbb{R}$ given by f(x) = 3x + 2 is one-one.

Proof: For $x_1, x_2 \in \mathbb{R}$, we have

$$f(x_1) = f(x_2) \implies 3x_1 + 2 = 3x_2 + 2 \implies x_1 = x_2.$$

Therefore, *f* is one-one.

Example

Example 2: The function $f:[0,\pi)\to\mathbb{R}$ given by $f(x)=\cos x$ is one-one.

Proof: Suppose $x, y \in [0, \pi)$ and f(x) = f(y), i.e., $\cos x = \cos y$. Without loss of generality, assume $x \ge y$. Now, we have $0 = \cos x - \cos y = -2\sin\left(\frac{x-y}{2}\right)\sin\left(\frac{x+y}{2}\right)$. This implies $\sin\left(\frac{x-y}{2}\right) = 0$ or $\sin\left(\frac{x+y}{2}\right) = 0$. Since $x, y \in [0, \pi)$ and $x \ge y$, we have $0 \le \frac{x-y}{2}, \frac{x+y}{2} < \pi$. Because $\sin \theta > 0$ for $0 < \theta < \pi$, the only possibilities are $\frac{x-y}{2} = 0$ or $\frac{x+y}{2} = 0$, that is, x-y = 0 or x + y = 0. Since $x, y \ge 0$, the condition x + y = 0 implies x = y = 0. Hence, in all cases, f(x) = f(y) implies x = y. Therefore, f is one-one.

Exercise 1 Show that the following functions are one-one.

- (i) $f:[0,1) \to \mathbb{R}$ defined by $f(x) = x^2$.
- (ii) $f: \mathbb{Z} \to \mathbb{Z}$ defined by f(k) = 3k + 7.
- (iii) $f: \mathbb{N} \to \mathbb{N}$ defined by

$$f(n) = \begin{cases} n+2, & \text{if } n \text{ is odd,} \\ 2n, & \text{if } n \text{ is even.} \end{cases}$$

Hints:

- (i) Using the definition: assume $x_1, x_2 \in [0, 1)$ and $x_1 \neq x_2$. Show that $x_1^2 \neq x_2^2$ (use the fact that in [0, 1), squaring is strictly increasing).
- (ii) Using the definition: assume $k_1, k_2 \in \mathbb{Z}$ and $k_1 \neq k_2$. Show that $3k_1 + 7 \neq 3k_2 + 7$.
- (iii) Consider different cases based on parity (odd or even) of $n_1, n_2 \in \mathbb{N}$. Show that in all cases, $f(n_1) = f(n_2)$ implies $n_1 = n_2$.

When is a function not one-one?

A function $f: X \to Y$ is *not one-one* if we can find elements $x_1, x_2 \in X$ such that $x_1 \neq x_2$ and $f(x_1) = f(x_2)$.

Example 1 The function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is not one-one.

Proof: Take $1, -1 \in \mathbb{R}$. We have

$$f(-1) = (-1)^2 = 1.$$

 $f(1) = 1^2 = 1.$

Thus, f(-1) = f(1) even though $-1 \ne 1$. Therefore, f is not one-one.

Exercise 1. Let $M(2, \mathbb{R})$ denote the set of all 2×2 matrices over \mathbb{R} . Consider the function $f: M(2, \mathbb{R}) \to \mathbb{R}$ defined by $f(A) = \det(A)$. Show that f is not one-one.

Solution. Take two matrices $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. in $M(2, \mathbb{R})$. We have

$$det(A) = 1 \cdot 1 - 0 \cdot 0 = 1,$$
 $det(B) = 1 \cdot 1 - 1 \cdot 0 = 1.$

Thus det(A) = det(B) although $A \neq B$. Therefore f is not one-one.

(

Onto function

A function $f: X \to Y$ is said to be onto if the codomain of f equals its range, that is, if every element in Y is the image of some element in X, that is, if every element $y \in Y$ has a preimage. Its formal definition is given below:

Definition (Onto function): A function $f: X \to Y$ is said to be *onto* or *surjective* if for each $y \in Y$, there exists $x \in X$ such that y = f(x). In symbols,

 $f: X \to Y$ is onto if $\forall y \in Y$, $\exists x \in X$ such that y = f(x).

Example 1: The function $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = 3x + 2 is onto.

Proof: Let $y \in \mathbb{R}$. We need to find $x \in \mathbb{R}$ such that f(x) = 3x + 2 = y. Solving for x, we get $x = \frac{y-2}{3}$. Clearly, $x \in \mathbb{R}$, and f(x) = y. Hence, f is onto.

0 8/18

When is a function $f: X \to Y$ not onto?

A function $f: X \to Y$ is not onto if $\exists y \in Y$ such that $\forall x \in X, y \neq f(x)$.

In other words, f is not onto if there is an element $y \in Y$ which does not have a preimage in X, that is, no element of X maps to y. Alternately, f is not onto if the range R(f) is a proper subset of Y, i.e., $R(f) \subseteq Y$.

Example 1 The function $f: \mathbb{Z} \to \mathbb{N}$ defined by $f(m) = m^2$ is not onto.

Proof: We claim that $2 \in \mathbb{N}$ does not have a preimage. To see this, we need to show that for any integer $m, f(m) = m^2 \neq 2$.

- (1) If $m \in (-\infty, -2] \cup [2, \infty)$, then $f(m) = m^2 \ge 4 > 2$.
- (2) For $m \in \{-1, 0, 1\}, f(m) \in \{0, 1\} \neq 2$.

Thus, $f(m) \neq 2$ for each integer m, and hence 2 has no preimage. Therefore, f is not onto.

Example

Example 2 The function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2 + x + 1$ is not onto.

Proof: We claim that $0 \in \mathbb{R}$ does not have a preimage. On the contrary, assume that x is the preimage of 0. Then f(x) = 0, which implies that $f(x) = x^2 + x + 1 = x^2 + 2x + 1 - x = (x+1)^2 - x = 0 \implies (x+1)^2 = x$.

This implies $x \ge 0$. But, if $x \ge 0$, then

$$f(x) = x^2 + x + 1 \ge 1,$$

which is a contradiction.

Hence, 0 does not have a preimage and therefore f is not onto.

Exercise 1. Determine which of the following functions are surjective:

- (a) $f : \mathbb{R} \to \mathbb{R}$ where $f(x) = e^x$.
- (b) $f:(0,1) \to \mathbb{R}$ where $f(x) = \log x$.
- (c) $f : \mathbb{R} \to \mathbb{R}$ where $f(x) = \sin x$.

Hints:

- (a) The exponential function $e^x > 0$ for all $x \in \mathbb{R}$, so it does not produce negative numbers. Hence, f is *not onto* \mathbb{R} .
- (b) The natural logarithm $\log x$ is defined for $x \in (0, 1)$ and its range is $(-\infty, 0)$. Since $(-\infty, 0) \subseteq \mathbb{R}$, f is not onto \mathbb{R} .
- (c) The sine function satisfies $-1 \le \sin x \le 1$ for all $x \in \mathbb{R}$. Since the codomain is \mathbb{R} , f is not onto \mathbb{R} .

(

Bijective function

Definition (Bijection). A function $f: X \to Y$ which is both one-one and onto is called a *bijection* or a *one-one onto function*.

Example 1. The function $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = 3x + 2 is a bijection.

Proof: Step 1: f is one-one.

For $x_1, x_2 \in \mathbb{R}$, we have

$$f(x_1) = f(x_2) \implies 3x_1 + 2 = 3x_2 + 2 \implies x_1 = x_2.$$

Therefore, f is one-one.

Step 2: f is onto.

Let $y \in \mathbb{R}$. We need to find $x \in \mathbb{R}$ such that f(x) = 3x + 2 = y. Solving for x, we get $x = \frac{y-2}{3}$. Clearly, $x \in \mathbb{R}$, and f(x) = y. Hence, f is onto.

Since f is both one-one and onto, f is a bijection.

Example

Example Consider the following sets of natural numbers:

$$E = \{n \in \mathbb{N} : n = 2k \text{ for some } k \in \mathbb{N}\},$$
 the set of even natural numbers,

$$O = \{n \in \mathbb{N} : n = 2k - 1 \text{ for some } k \in \mathbb{N}\},$$
 the set of odd natural numbers.

We investigate whether there is a bijection between the following pairs:

- (1) \mathbb{N} and O
- (2) \mathbb{N} and E
- (3) *E* and *O*

Step 1: Bijection between \mathbb{N} and O

Define the function $f : \mathbb{N} \to O$ by

$$f(n) = 2n - 1.$$

- Injective: If $f(n_1) = f(n_2)$, then $2n_1 1 = 2n_2 1 \implies n_1 = n_2$.
- Surjective: For any $m \in O$, m = 2k 1 for some $k \in \mathbb{N}$. Then f(k) = m.

Hence, f is a bijection.

Example Continued

Step 2: Bijection between $\mathbb N$ and E

Define the function $g : \mathbb{N} \to E$ by g(n) = 2n.

- Injective: If $g(n_1) = g(n_2)$, then $2n_1 = 2n_2 \implies n_1 = n_2$.
- Surjective: For any $m \in E$, m = 2k for some $k \in \mathbb{N}$. Then g(k) = m.

Hence, g is a bijection.

Step 3: Bijection between *E* **and** *O*

Define the function $h: E \to O$ by h(n) = n - 1.

- *Injective*: If $h(n_1) = h(n_2)$, then $n_1 1 = n_2 1 \implies n_1 = n_2$.
- Surjective: For any $m \in O$, m = 2k 1 for some $k \in \mathbb{N}$. Then $n = m + 1 = 2k \in E$, and h(n) = m.

Hence, h is a bijection.

Exercise 1 Exhibit a bijection between the following sets:

- (1) \mathbb{N} and $\{0\} \cup \mathbb{N}$.
- (2) \mathbb{N} and \mathbb{Z} .
- (3) \mathbb{N} and $\{m \in \mathbb{Z} : m \ge m_0\}$, where m_0 is a fixed integer.
- (4) $E = \{2, 4, 6, 8, \dots\}$ and $\{0\} \cup \mathbb{N}$.

Hints:

- (1) Consider $f : \mathbb{N} \to \{0\} \cup \mathbb{N}$ defined by f(n) = n 1.
- (2) Consider $f : \mathbb{N} \to \mathbb{Z}$ defined by $f(n) = \begin{cases} -\frac{(n+1)}{2}, & \text{if } n \text{ is odd,} \\ \frac{n}{2} 1, & \text{if } n \text{ is even.} \end{cases}$
- (3) Consider $f : \mathbb{N} \to \{m \in \mathbb{Z} : m \ge m_0\}$ defined by $f(n) = m_0 + n 1$.
- (4) Consider $f : \mathbb{E} \to \{0\} \cup \mathbb{N}$ defined by $f(n) = \frac{n}{2} 1$.

Exercise 2: Let O be the set of all odd natural numbers and E be the set of all even natural numbers. Give an example of a function $f: O \to E$ which is:

- (a) One-one but not onto.
- (b) Onto but not one-one.
- (c) Neither one-one nor onto.
- (d) One-one and onto (bijection).

Exercise 3: Find a one-one map from $\mathbb{N} \times \mathbb{N}$ to \mathbb{N} and a one-one map from \mathbb{N} to $\mathbb{N} \times \mathbb{N}$.

Hint: Consider the function $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ defined by $f(m, n) = 2^m 3^n$ and Consider another function $g: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ defined by f(n) = (n, n).

Exercise 4: Give a one-one map from the set of rational numbers \mathbb{Q} to $\mathbb{Z} \times \mathbb{N}$.

Hint:

- Any rational number can be written as p/q in lowest terms, where $p \in \mathbb{Z}$ and $q \in \mathbb{N}$.
- Define $f: \mathbb{Q} \to \mathbb{Z} \times \mathbb{N}$ by $f\left(\frac{p}{q}\right) = (p, q)$, which is injective because the reduced fraction representation is unique.

Exercise 5: Determine whether the following functions are one-one and/or onto.

(a) $f: \mathbb{N} \to \mathbb{N}$,

$$f(n) = \begin{cases} n, & \text{if } n \text{ is odd,} \\ 2n, & \text{if } n \text{ is even.} \end{cases}$$

- (b) $f:[0,1] \to [0,1], f(x) = \frac{1-x}{1+x}$.
- (c) $f:[0,1] \to [a,b], f(x) = bx + a(1-x).$
- (d) $f : \mathbb{R} \to \mathbb{R}, f(x) = \frac{1}{2}(x + |x|).$
- (e) $f: \mathbb{R} \to \mathbb{R}, f(x) = x + [x]$, where [x] denotes the greatest integer less than or equal to x.
- (f) $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = \begin{cases} x^2 + x + 1, & x \ge 0, \\ x + 1, & x < 0. \end{cases}$$

- (g) $f:[0,2\pi) \to D = \{(x,y): x^2 + y^2 = 1\}, f(x) = (\cos x, \sin x).$
- (h) $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$.
- (i) $g: \mathbb{R} \to \mathbb{R}$, $g(x) = x^3$.